必修一物理知识点总结(集锦14篇)

时间:2023-06-27 11:44:08 范文大全

本文为大家分享必修一物理知识点总结相关范本模板,以供参考。

必修一物理知识点总结 第1篇

牛顿运动定律的应用

1、动力学的两类基本问题:

(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:

①根据受力情况,利用牛顿第二定律求出物体的加速度.

②根据题意,选择恰当的运动学公式求解相关的速度、位移等.

(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.

②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.

(3)注意点:

①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.

②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.

2、关于超重和失重:

在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:

(1)当物体处于超重和失重状态时,物体的重力并没有变化.

(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向.

(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.

易错现象:

(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。

(2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。

(3)些同学对超重、失重的概念理解不清,误认为超重就是物体的重力增加啦,失重就是物体的重力减少啦。

必修一物理知识点总结 第2篇

1、参考系: 运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。

2、质点:

(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。

(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。

(3)物体可被看做质点的几种情况:

①平动的物体通常可视为质点。

②有转动但相对平动而言可以忽略时,也可以把物体视为质点。

③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。

【注】质点并不是质量很小的点,要区别于几何学中的“点”。

3、时间和时刻:

时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。

4、位移和路程:

位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;

路程是质点运动轨迹的长度,是标量。

5、速度:

用来描述质点运动快慢和方向的物理量,是矢量。

(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。

6、加速度:用量描述速度变化快慢的的物理量,其定义式为

加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。

补充:速度与加速度的关系

1、速度与加速度没有必然的关系,即:

(1)速度大,加速度不一定也大;

(2)加速度大,速度不一定也大;

(3)速度为零,加速度不一定也为零;

(4)加速度为零,速度不一定也为零。

2、当加速度a与速度V方向的关系确定时,则有:

(1)若a 与V方向相同时,不管a如何变化,V都增大。

(2)若a 与V方向相反时,不管a如何变化,V都减小。

二、匀变速直线运动的规律及其应用

1、定义:在任意相等的时间内速度的变化都相等的直线运动。

2、匀变速直线运动的基本规律,可由下面四个基本关系式表示:

(1)速度公式

(2)位移公式

(3)速度与位移式

(4)平均速度公式

3、几个常用的推论:

(1)任意两个连续相等的时间T内的位移之差为恒量

△x=x2-x1=x3-x2=……=xn-xn-1=aT2

(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度,

(3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为

4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论:

①1T末,2T末,3T末……瞬时速度之比为:

v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

②第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:

x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)

③1T内,2T内,3T内……位移之比为:

xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

④通过连续相等的位移所用时间之比为:

t1∶t2∶t3∶……∶tn=

三、自由落体运动,竖直上抛运动

1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。

2、自由落体运动规律:

①速度公式:

②位移公式:

③速度—位移公式:

④下落到地面所需时间:

3、竖直上抛运动:

可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。

(1)竖直上抛运动规律

①速度公式:

②位移公式:

③速度—位移公式:

两个推论:

上升到最高点所用时间:

上升的最大高度:

(2)竖直上抛运动的对称性

如下图,物体以初速度v0竖直上抛, A、B为途中的任意两点,C为最高点,则:

(1)时间对称性

物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。

(2)速度对称性

物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。

【注】在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。

四、运动的图象,运动的相遇和追及问题

1、图象:

(1)x—t图象

①物理意义:反映了做直线运动的物体的位移随时间变化的规律。

②表示物体处于静止状态

③图线斜率的意义:

图线上某点切线的斜率的大小表示物体速度的大小;

图线上某点切线的斜率的正负表示物体方向。

④两种特殊的x-t图象

匀速直线运动的x-t图象是一条过原点的直线;

若x-t图象是一条平行于时间轴的直线,则表示物体处于静止状态。

(2)v—t图象

①物理意义:反映了做直线运动的物体的速度随时间变化的规律。

②图线斜率的意义:

图线上某点切线的斜率的大小表示物体运动的加速度的大小

图线上某点切线的斜率的正负表示加速度的方向

③图象与坐标轴围成的“面积”的意义:

图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。

若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向。

③常见的两种图象形式:

匀速直线运动的v-t图象是与横轴平行的直线

匀变速直线运动的v-t图象是一条倾斜的直线

2、相遇和追及问题:

这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件,通常有两种情况:

(1)物体A追上物体B:开始时,两个物体相距x0,则A追上B时必有,且。

(2)物体A追赶物体B:开始时,两个物体相距x0,要使A与B不相撞,则有

易错现象:

1、混淆x—t图象和v-t图象,不能区分它们的物理意义

2、不能正确计算图线的斜率、面积

3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退

五、力/重力/弹力/摩擦力

1、力:

力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

按照力命名的依据不同,可以把力分为:

①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

力的作用效果:

①形变;

②改变运动状态.

2、重力:

由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。

注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

3、弹力:

(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。

(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

(4)大小:

①弹簧的弹力大小由F=kx计算

②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定

4、摩擦力:

(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可

(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反,但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。

(3)摩擦力的大小:

① 滑动摩擦力:

说明:

FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关。

② 静摩擦:由物体的平衡条件或牛顿第二定律求解,与正压力无关。

大小范围0

静摩擦力的具体数值可用以下方法来计算:一是根据平衡条件,二是根据牛顿第二定律求出合力,然后通过受力分析确定。

(4)注意事项:

摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

摩擦力可以作正功,也可以作负功,还可以不作功。

摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

易错现象:

不会确定系统的重心位置

没有掌握弹力、摩擦力有无的判定方法

静摩擦力方向的确定错误

六、力的合成和分解

1、标量和矢量:

(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。

(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。

2、力的合成与分解:

(1)合力与分力

(2)共点力的合成:

1、共点力

几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

2、力的合成方法

求几个已知力的合力叫做力的合成。

3、平行四边形定则:

两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

求、的合力公式:

注意:

(1)力的合成和分解都均遵从平行四边行法则。

(2)两个力的合力范围:

(3)合力可以大于分力、也可以小于分力、也可以等于分力

(4)两个分力成直角时,用勾股定理或三角函数。

注意事项:

(1)力的合成与分解,体现了用等效的方法研究物理问题

(2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力,而不能同时考虑合力

(3)共点的两个力合力的大小范围是:|F1-F2|≤F合≤Fl+F2

(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零

(5)力的分解时要认准力作用在物体上产生的实际效果,按实际效果来分解

(6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)

易错现象:

对含静摩擦力的合成问题没有掌握其可变特性

不能按力的作用效果正确分解力

没有掌握正交分解的基本方法

七、受力分析

1、受力分析:

要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:

(1)确定研究对象,并隔离出来;

(2)先画重力,然后弹力、摩擦力,再画电、磁场力;

(3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;

(4)合力或分力不能重复列为物体所受的力

2、整体法和隔离体法

(1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

(2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。

(3)方法选择

所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

3、注意事项:

正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:

(1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力

(2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的.同时应只画物体的受力,不能把对象对其它物体的施力也画进去

易错现象:

不能正确判定弹力和摩擦力的有无;

不能灵活选取研究对象;

受力分析时受力与施力分不清。

八、共点力作用下物体的平衡

1、物体的平衡:

物体的平衡有两种情况:一是质点静止或做匀速直线运动;二是物体不转动或匀速转动(此时的物体不能看作质点)

2、共点力作用下物体的平衡:

①平衡状态:静止或匀速直线运动状态,物体的加速度为零

②平衡条件:合力为零,亦即F合=0或∑Fx=0,∑Fy=0

a、二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。

b、三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡

c、若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:

F合x= F1x+ F2x + ………+ Fnx =0

F合y= F1y+ F2y + ………+ Fny =0 (按接触面分解或按运动方向分解)

③平衡条件的推论:

当物体处于平衡状态时,它所受的某一个力与所受的其它力的合力等值反向;

当三个共点力作用在物体(质点)上处于平衡时,三个力的矢量组成一封闭的三角形按同一环绕方向。

3、平衡物体的临界问题:

当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。可理解成“恰好出现”或“恰好不出现”。

临界问题的分析方法:

极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。

易错现象:

(1)不能灵活应用整体法和隔离法;

(2)不注意动态平衡中边界条件的约束;

(3)不能正确制定临界条件。

九、牛顿运动三定律

1、牛顿第一定律:

(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

(2)理解:

①它说明了一切物体都有惯性,惯性是物体的固有性质.质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)

②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因

③它是通过理想实验得出的,它不能由实际的实验来验证

2、牛顿第二定律:

内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同

公式:

理解:

①瞬时性:力和加速度同时产生、同时变化、同时消失

②矢量性:加速度的方向与合外力的方向相同

③同体性:合外力、质量和加速度是针对同一物体(同一研究对象)

④同一性:合外力、质量和加速度的单位统一用SI制主单位⑤相对性:加速度是相对于惯性参照系的

3、牛顿第三定律:

(1)内容:

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上

(2)理解:

①作用力和反作用力的同时性。它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。

②作用力和反作用力的性质相同,即作用力和反作用力是属同种性质的力。

③作用力和反作用力的相互依赖性:它们是相互依存,互以对方作为自己存在的前提。

④作用力和反作用力的不可叠加性。作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。

4、牛顿运动定律的适用范围:

对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。

易错现象:

(1)错误地认为惯性与物体的速度有关,速度越大惯性越大,速度越小惯性越小;另外一种错误是认为惯性和力是同一个概念。

(2)不能正确地运用力和运动的关系分析物体的运动过程中速度和加速度等参量的变化。

(3)不能把物体运动的加速度与其受到的合外力的瞬时对应关系正确运用到轻绳、轻弹簧和轻杆等理想化模型上。

十、牛顿运动定律的应用(一)

1、运用牛顿第二定律解题的基本思路

(1)通过认真审题,确定研究对象

(2)采用隔离体法,正确受力分析

(3)建立坐标系,正交分解力

(4)根据牛顿第二定律列出方程

(5)统一单位,求出答案

2、解决连接体问题的基本方法是:

(1)选取最佳的研究对象。选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法.一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究

(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案

3、解决临界问题的基本方法是:

(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件

(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件

易错现象:

(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。

(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。

(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的最大静摩擦力。

十一、牛顿运动定律的应用(二)

1、动力学的两类基本问题:

(1)已知物体的受力情况,确定物体的运动情况,基本解题思路是:

①根据受力情况,利用牛顿第二定律求出物体的加速度

②根据题意,选择恰当的运动学公式求解相关的速度、位移等

(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:

①根据运动情况,利用运动学公式求出物体的加速度

②根据牛顿第二定律确定物体所受的合外力,从而求出未知力

(3)注意点:

①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键

②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化

2、关于超重和失重:

在平衡状态时,物体对水平支持物的压力大小等于物体的重力。当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力。当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象。

当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象。对其理解应注意以下三点:

(1)当物体处于超重和失重状态时,物体的重力并没有变化

(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向

(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等

易错现象:

(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。

(2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。

(3)一些同学对超重、失重的概念理解不清,误认为超重就是物体的重力增加啦,失重就是物体的重力减少了。

必修一物理知识点总结 第3篇

(一)运动的描述

内容标准

(1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。

例1 了解亚里士多德 关于力与运动的主要观点和研究方法。

例2 了解伽利略 的实验研究工作,认识伽利略有关实验的科学思想和方法 。

(2)通过对质点 的认识,了解物理学研究中物理模型的特点,体会物理模型在探索自然规律中的作用。

例3 认识在哪些情况下,可以把物体看成质点。

(3)经历匀变速直线运动 的实验研究过程,理解位移、速度和加速度,了解匀变速直线运动的规律,体会实验在发现自然规律中的作用。

例4 用打点计时器 、频闪照相或其他实验方法研究匀变速直线运动。

例5 通过史实,了解伽利略研究自由落体运动 所用的实验和推理方法。

(4)能用公式和图像描述 匀变速直线运动,体会数学在研究物理问题中的重要性。

活动建议

(1)通过实验研究质量相同、大小不同的物体在空气中下落的情况,从中了解空气对落体运动的影响。

(2)通过查找资料等方式,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。

(二)相互作用与运动规律

内容标准

(1)通过实验认识滑动摩擦 、静摩擦 的规律,能用动摩擦因数 计算摩擦力。

(2)知道常见的形变,通过实验了解物体的弹性,知道胡克定律 。

例1 调查日常生活和生产中所用弹簧的形状及使用目的(如获得弹力或减缓振动等)。

例2 制作一个简易弹簧秤 ,用胡克定律解释其工作原理。

(3)通过实验,理解力的合成与分解,知道共点力的平衡条件,区分矢量与标量,用力的合成与分解分析日常生活中的问题。

例3 研究两个大小相等的共点力在不同夹角时的合力大小。

(4)通过实验,探究加速度与物体质量、物体受力的关系。理解牛顿运动定律 ,用牛顿运动定律解释生活中的有关问题。通过实验认识超重和失重现象。

例4 通过实验测量加速度、力、质量,分别作出表示加速度与力、加速度与质量的关系的图像,根据图像写出加速度与力、质量的关系式。体会探究过程中所用的科学方法 。

例5 根据牛顿第二定律 说明物体所受的重力与质量的关系。

(5)认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。

例6 在等式 中给定k= 1,从而定义力的单位。

活动建议

(1)调查日常生活和生产中利用静摩擦 的事例。

(2)通过各种活动,例如乘坐电梯、到游乐场乘坐过山车等,了解和体验失重与超重。

(3)根据牛顿第二定律,设计一种能显示加速度大小的装置。

(4)通过听讲座、看录像等活动,了解宇航员的生活,了解在人造卫星上进行微重力 条件下的实验,尝试设计一种在人造卫星或宇宙飞船上进行微重力条件下的实验方案。

必修一物理知识点总结 第4篇

第一节探究形变与弹力的关系

认识形变

1.物体形状回体积发生变化简称形变。

2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。

按效果分:弹性形变、塑性形变

3.弹力有无的判断:1)定义法(产生条件)

2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。

3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。

弹性与弹性限度

1.物体具有恢复原状的性质称为弹性。

2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。

3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。

探究弹力

1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。

2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

F=kx

4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

必修一物理知识点总结 第5篇

运动的图线

表示函数关系可以用公式,也可以用图像。图像也是描述物理规律的重要方法,不仅在力学中,在电磁学中、热学中也是经常用到的。图像的优点是能够形象、直观地反映出函数关系。

位移和速度都是时间的函数,因此描述物体运动的规律常用位移一时间图像(s—t 图)和速度一时间图像(v 一 t 图)。

对于图像要注意理解它的物理意义,即对图像的纵、横轴表示的是什么物理量,图线的斜率、截距代表什么意义都要搞清楚。形状完全相同的图线,在不同的图像(坐标轴的物理量不同)中意义会完全不同。

下表是对形状一样的 S 一 t 图和 v 一 t 图意义上的比较。

必修一物理知识点总结 第6篇

匀变速直线运动

1、速度Vt=Vo+at

位移s=Vot+at?/2=V平t= Vt/2t

有用推论Vt?-Vo?=2as

平均速度V平=s/t(定义式)

中间时刻速度Vt/2=V平=(Vt+Vo)/2

中间位置速度Vs/2=√[(Vo?+Vt?)/2]

加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

实验用推论Δs=aT?{Δs为连续相邻相等时间(T)内位移之差}

主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算。

注:(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。

自由落体运动

初速度Vo=0

末速度Vt=gt

下落高度h=gt2/2(从Vo位置向下计算)

推论Vt2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

竖直上抛运动

位移s=Vot-gt2/2

末速度Vt=Vo-gt (≈10m/s2)

有用推论Vt2-Vo2=-2gs

上升最大高度Hm=Vo2/2g(抛出点算起)

往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

重力G=mg (方向竖直向下,≈10m/s2,作用点在重心,适用于地球表面附近)

胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

注:(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)其它相关内容:静摩擦力(大小、方向);

2)力的合成与分解

同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

合力大小范围:|F1-F2|≤F≤|F1+F2|

力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

动力学(运动和力)

牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

超重:FN>G,失重:FN

牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动

必修一物理知识点总结 第7篇

第一节认识运动

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特性:普遍性,永恒性,多样性

参考系

1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2.参考系的选取是自由的。

1)比较两个物体的运动必须选用同一参考系。

2)参照物不一定静止,但被认为是静止的。

质点

1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2.质点条件:

1)物体中各点的运动情况完全相同(物体做平动)

2)物体的大小(线度)<<它通过的距离

3.质点具有相对性,而不具有绝对性。

4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

第二节时间位移

时间与时刻

1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

△t=t2—t1

2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

3.通常以问题中的初始时刻为零点。

路程和位移

1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

第三节记录物体的运动信息

打点记时器:通过在纸带上打出一系列的.点来记录物体运动信息的仪器。(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0.02s。

第四节物体运动的速度

物体通过的路程与所用的时间之比叫做速度。

平均速度(与位移、时间间隔相对应)

物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。

v=s/t

瞬时速度(与位置时刻相对应)

瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。

速率≥速度

第五节速度变化的快慢加速度

1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值

a=(vt—v0)/t

2.a不由△v、t决定,而是由F、m决定。

3.变化量=末态量值—初态量值……表示变化的大小或多少

4.变化率=变化量/时间……表示变化快慢

5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。

6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。

第六节用图象描述直线运动

匀变速直线运动的位移图象

1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)

2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)

3.图象中两图线的交点表示两物体在这一时刻相遇。

匀变速直线运动的速度图象

1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)

2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

必修一物理知识点总结 第8篇

对摩擦力认识的四个“不一定”:

(1)摩擦力不一定是阻力。

(2)静摩擦力不一定比滑动摩擦力小。

(3)静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向。

(4)摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力。

静摩擦力用二力平衡来求解,滑动摩擦力用公式F=μFn来求解。

静摩擦力存在及其方向的判断:

存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。

必修一物理知识点总结 第9篇

学习物理非常注重过程,一个认知、理解、运用的过程。

认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。

理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。

运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。

所以,在学习时,首先,不要有惧怕的心理,因为你前一段没学好的经历可能会暗示你什么,这可能会导致你恶性循环。努力告诉自己“我能行!!!”其实心理暗示很有用哦!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。

其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。

最后一点也是最重要的一点,就是一定要做好及时总结。例如,上次考试的卷子发下来了,虽然认真订正过了,但还要想想为什么会错?正确答案是怎么算出来的?如果下次再考到还会错吗?等等。

我想,通过这些学习方法,一定能学好物理的。

必修一物理知识点总结 第10篇

描述物体运动的几个基本概念

机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。

参考系:被假定为不动的物体系。

对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。

质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。

物体可视为质点主要是以下三种情形:

(1)物体平动时;

(2)物体的位移远远大于物体本身的限度时;

(3)只研究物体的平动,而不考虑其转动效果时。

时刻和时间

(1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2 秒末”,“速度达 2m/s 时”都是指时刻。

(2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。

位移和路程

(1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。

(2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。

(3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。

速度

(1).速度:是描述物体运动方向和快慢的物理量。

(2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

(3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。

①平均速度是矢量,方向与位移方向相同。

②平均速度的大小与物体不同的运动阶段有关。

③v=s/t 是平均速度的定义式,适用于所有的运动。

(4).平均速率:物体在某段时间的路程与所用时间的比值,是粗略描述运动快慢的。

①平均速率是标量。

②v=s/t是平均速率的定义式,适用于所有的运动。

③平均速度和平均速率往往是不等的,只有物体做无往复的直线运动时二者才相等。

必修一物理知识点总结 第11篇

动量和冲量

(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv。是矢量,方向与v的方向相同。两个动量相同必须是大小相等,方向一致。

(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft。冲量也是矢量,它的方向由力的方向决定。

★★动量定理:物体所受合外力的冲量等于它的动量的变化。表达式:Ft=p′-p或Ft=mv′-mv

(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。高三物理一轮复习中也需要特别注意。

(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力。

(3)动量定理的研究对象可以是单个物体,也可以是物体系统。对物体系统,只需分析系统受的外力,不必考虑系统内力。系统内力的作用不改变整个系统的总动量。

(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。

★★★动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

表达式:m1v1+m2v2=m1v1′+m2v2′

(1)动量守恒定律成立的条件

①系统不受外力或系统所受外力的合力为零。

②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。

③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。

(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。

爆炸与碰撞

(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理。

(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。

(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理。即作用后还从作用前瞬间的位置以新的动量开始运动。

反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象。喷气式飞机、火箭等都是利用反冲运动的实例。显然,在反冲现象里,系统的动量是守恒的。

必修一物理知识点总结 第12篇

一、质点的运动(1)——直线运动

1)匀变速直线运动

1、平均速度V平=S/t(定义式)2、有用推论Vt^2–Vo^2=2as

3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at

5、中间位置速度Vs/2=(Vo^2+Vt^2)/21/26、位移S=V平t=Vot+at^2/2=Vt/2t

7、加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8、实验用推论ΔS=aT^2ΔS为相邻连续相等时间(T)内位移之差

9、主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2末速度(Vt):m/s

时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3、6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s——t图/v——t图/速度与速率/

2)自由落体

1、初速度Vo=0

2、末速度Vt=gt

3、下落高度h=gt^2/2(从Vo位置向下计算)4、推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9、8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3)竖直上抛

1、位移S=Vot-gt^2/22、末速度Vt=Vo-gt(g=9、8≈10m/s2)

3、有用推论Vt^2–Vo^2=-2gS4、上升最大高度Hm=Vo^2/2g(抛出点算起)

5、往返时间t=2Vo/g(从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)——曲线运动万有引力

1)平抛运动

1、水平方向速度Vx=Vo2、竖直方向速度Vy=gt

3、水平方向位移Sx=Vot4、竖直方向位移(Sy)=gt^2/2

5、运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)

6、合速度Vt=(Vx^2+Vy^2)1/2=Vo^2+(gt)^21/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo

7、合位移S=(Sx^2+Sy^2)1/2,

位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1、线速度V=s/t=2πR/T2、角速度ω=Φ/t=2π/T=2πf

3、向心加速度a=V^2/R=ω^2R=(2π/T)^2R4、向心力F心=Mv^2/R=mω^2_R=m(2π/T)^2_R

5、周期与频率T=1/f6、角速度与线速度的关系V=ωR

7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8、主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)

周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s

角速度(ω):rad/s向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1、开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)

2、万有引力定律F=Gm1m2/r^2G=6、67×10^-11N·m^2/kg^2方向在它们的连线上

3、天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)

4、卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/2

5、第一(二、三)宇宙速度V1=(g地r地)1/2=7、9Km/sV2=11、2Km/sV3=16、7Km/s

6、地球同步卫星GMm/(R+h)^2=m_4π^2(R+h)/T^2h≈3、6kmh:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7、9Km/S。

四、机械能

1、功

(1)做功的两个条件:作用在物体上的力。

物体在里的方向上通过的距离。

(2)功的大小:W=Fscosa功是标量功的单位:焦耳(J)

1J=1N_m

当0<=a<派/2w>0F做正功F是动力

当a=派/2w=0(cos派/2=0)F不作功

当派/2<=a<派W<0F做负功F是阻力

(3)总功的求法:

W总=W1+W2+W3……Wn

W总=F合Scosa

2、功率

(1)定义:功跟完成这些功所用时间的比值。

P=W/t功率是标量功率单位:瓦特(w)

此公式求的是平均功率

1w=1J/s1000w=1kw

(2)功率的另一个表达式:P=Fvcosa

当F与v方向相同时,P=Fv。(此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率:当v为平均速度时

2)瞬时功率:当v为t时刻的瞬时速度

(3)额定功率:指机器正常工作时最大输出功率

实际功率:指机器在实际工作中的输出功率

正常工作时:实际功率≤额定功率

(4)机车运动问题(前提:阻力f恒定)

P=FvF=ma+f(由牛顿第二定律得)

汽车启动有两种模式

1)汽车以恒定功率启动(a在减小,一直到0)

P恒定v在增加F在减小尤F=ma+f

当F减小=f时v此时有最大值

2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定F不变(F=ma+f)V在增加P实逐渐增加最大

此时的P为额定功率即P一定

P恒定v在增加F在减小尤F=ma+f

当F减小=f时v此时有最大值

3、功和能

(1)功和能的关系:做功的过程就是能量转化的过程

功是能量转化的量度

(2)功和能的区别:能是物体运动状态决定的物理量,即过程量

功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别。

4、动能。动能定理

(1)动能定义:物体由于运动而具有的能量。用Ek表示

表达式Ek=1/2mv^2能是标量也是过程量

单位:焦耳(J)1kg_m^2/s^2=1J

(2)动能定理内容:合外力做的功等于物体动能的变化

表达式W合=ΔEk=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5、重力势能

(1)定义:物体由于被举高而具有的能量。用Ep表示

表达式Ep=mgh是标量单位:焦耳(J)

(2)重力做功和重力势能的关系

W重=-ΔEp

重力势能的变化由重力做功来量度

(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关

重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是绝对的,和参考平面无关

(4)弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关

弹性势能的变化由弹力做功来量度

6、机械能守恒定律

(1)机械能:动能,重力势能,弹性势能的总称

总机械能:E=Ek+Ep是标量也具有相对性

机械能的变化,等于非重力做功(比如阻力做的功)

ΔE=W非重

机械能之间可以相互转化

(2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能

发生相互转化,但机械能保持不变

表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有重力做功

必修一物理知识点总结 第13篇

教学准备

教学目标

知识与技能

知道时间和时刻的区别和联系.

理解位移的概念,了解路程与位移的区别.

知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.

能用数轴或一维直线坐标表示时刻和时间、位置和位移.

知道时刻与位置、时间与位移的对应关系.

过程与方法

围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法.

会用坐标表示时刻与时间、位置和位移及相关方向

会用矢量表示和计算质点位移,用标量表示路程.

情感态度与价值观

通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实.

通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量.

养成良好的思考表述习惯和科学的价值观.

从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点.

教学重难点

教学重点

时间和时刻的概念以及它们之间的区别和联系

位移的概念以及它与路程的区别.

教学难点

帮助学生正确认识生活中的时间与时刻.

理解位移的概念,会用有向线段表示位移

教学工具

多媒体、板书

教学过程

一、时刻和时间间隔

基本知识

(1)时刻是指某一瞬间,时间间隔表示某一过程.

(2)在表示时间的数轴上,时刻用点来表示,时间用线段来表示.

(3)在国际单位制中,表示时间和时刻的单位是秒,它的符号是

思考判断

(1)时刻和时间间隔都是时间,没有本质区别.(×)

(2)飞机8点40分从上海起飞,10点05分降落到北京,分别指的是两个时间间隔.(×)

(3)20__年10月25日23时33分在西昌成功将第16颗北斗导航卫星发射升空.25日23时33分,指的是时刻.(√)

探究交流

时间的常用单位有哪些?生活中、实验室中有哪些常用的计时仪器?

【提示】在国际单位制中,时间的单位是秒,常用单位有分钟、小时,还有年、月、日等.生活中用各种钟表来计时,实验室和运动场上常用停表来测量时间,若要比较精确地研究物体的运动情况,有时需要测量和记录很短的时间,学校的实验室中常用电磁打点计时器或电火花计时器来完成.

二、路程和位移

基本知识

(1)路程

物体运动轨迹的长度.

(2)位移

①物理意义:表示物体(质点)位置变化的物理量.

②定义:从初位置到末位置的一条有向线段.

③大小:初、末位置间有向线段的长度.

④方向:由初位置指向末位置.

思考判断

(1)路程的大小一定大于位移的大小.(×)

(2)物体运动时,路程相等,位移一定也相等.(×)

(3)列车里程表中标出的北京到天津122km,指的是列车从北京到天津的路程.(√)

探究交流

一个人从北京去重庆,可以乘火车,也可以乘飞机,还可以先乘火车到武汉,然后再乘轮船沿长江到重庆,如图所示,则他的运动轨迹、位置变动、走过的路程和他的位移是否相同?

【提示】他的运动轨迹不同,走过的路程不同;他的位置变动相同,位移相同.

三、矢量和标量

基本知识

(1)矢量

既有大小又有方向的物理量.如位移、力等.

(2)标量

只有大小、没有方向的物理量.如质量、时间、路程等.

(3)运算法则

两个标量的加减遵从算术加减法,而矢量则不同,后面将学习到.

思考判断

(1)负5m的位移比正3m的位移小.(×)

(2)李强向东行进5m,张伟向北行进也5m,他们的位移不同.(√)

(3)路程是标量,位移是矢量.(√)

探究交流

温度是标量还是矢量?+2℃和-5℃哪一个温度高?

【提示】温度是标量,其正、负表示相对大小,所以+2℃比-5℃温度高.

必修一物理知识点总结 第14篇

第一章定义:力是物体之间的相互作用。

理解要点:

(1)力具有物质性:力不能离开物体而存在。

说明:①对某一物体而言,可能有一个或多个施力物体。

②并非先有施力物体,后有受力物体

(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。

说明:①相互作用的物体可以直接接触,也可以不接触。

②力的大小用测力计测量。

(3)力具有矢量性:力不仅有大小,也有方向。

(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。

(5)力的种类:

①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。

说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。

重力

定义:由于受到地球的吸引而使物体受到的力叫重力。

说明:①地球附近的物体都受到重力作用。

②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。

③重力的施力物体是地球。

④在两极时重力等于物体所受的万有引力,在其它位置时不相等。

(1)重力的大小:G=mg

说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。

③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

(2)重力的方向:竖直向下(即垂直于水平面)

说明:①在两极与在赤道上的物体,所受重力的方向指向地心。

②重力的方向不受其它作用力的影响,与运动状态也没有关系。

(3)重心:物体所受重力的作用点。

重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。

②质量分布不均匀的物体的重心与物体的形状、质量分布有关。

③薄板形物体的重心,可用悬挂法确定。

说明:①物体的重心可在物体上,也可在物体外。

②重心的位置与物体所处的位置及放置状态和运动状态无关。

③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。

弹力

(1)形变:物体的形状或体积的改变,叫做形变。

说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。

②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。

(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。

说明:①弹力产生的条件:接触;弹性形变。

②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。

③弹力必须产生在同时形变的两物体间。

④弹力与弹性形变同时产生同时消失。

(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。

几种典型的产生弹力的理想模型:

①轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。

②点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。

③平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。

(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。

【必修一物理知识点总结(集锦14篇)】相关文章:

1.必修一物理知识点总结(集锦14篇)