百分数知识点总结(推荐5篇)

时间:2023-01-15 11:22:10 范文大全

在学校里,我想每个人都应该有过相关的知识点!知识点是信息传播的基础单元,知识点对于学生的学习导航起着关键的作用.下面是范文狗小编为大家收集整理的百分数知识点总结,多篇合集,全方面满足您的需求,希望能帮到您!

百分数知识点总结 第1篇

一、百分数的`意义:

表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉“%”。

(2)小数化百分数:小数点向右移动两位,添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数化小数:分子除以分母。

二、百分数应用题

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

求乙比甲少百分之几:(甲-乙)÷甲

3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

4、已知一个数的百分之几是多少,求这个数。

部分量÷百分率=一个数(单位“1”)

5、折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣、成数=几分之几、百分之几、小数

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八点五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半价

6、利率

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息。

(3)利息与本金的比值叫做利率。

利息=本金×利率×时间

税后利息=利息-利息的应纳税额=利息-利息×5%

注:国债和教育储蓄的利息不纳税

7、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

(2)求甲比乙多百分之几——(甲-乙)÷乙×100%

(3)求甲比乙少百分之几——(乙-甲)÷乙×100%

数学分数的加减法知识点

1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

小学数学必背关系表达式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

百分数知识点总结 第2篇

分数和百分数的应用

1、分数加减法应用题:

分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2、分数乘法应用题:

是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位1的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3、分数除法应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的'量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。

已知一个数的几分之几(或百分之几),求这个数。

特征:已知一个实际数量和它相对应的分率,求单位1的量。

解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

4、出勤率

发芽率=发芽种子数/试验种子数100%

小麦的出粉率=面粉的重量/小麦的重量100%

产品的合格率=合格的产品数/产品总数100%

职工的出勤率=实际出勤人数/应出勤人数100%

5、工程问题:

是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。解题关键:把工作总量看作单位1,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:

工作总量=工作效率工作时间

工作效率=工作总量工作时间

工作时间=工作总量工作效率

工作总量工作效率和=合作时间

6、纳税

纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

缴纳的税款叫应纳税款。

应纳税额与各种收入的(销售额、营业额、应纳税所得额)的比率叫做税率。

*利息

存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金利率时间

百分数知识点总结 第3篇

(一)百分数的基本概念

百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。

百分数的意义:表示一个数是另一个数的百分之几。

例如:25%的意义:表示一个数是另一个数的25%。

百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

小数与百分数互化的规则:

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

百分数与分数互化的规则:

把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

(二)百分数应用题

百分数应用题(一)

求增加百分之几?减少百分之几?

公式:增加百分之几=增加的部分÷单位1

减少百分之几=减少的部分÷单位1

例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:45立方厘米

第二步:增加的部分:50—45=5立方厘米

第三步:增加百分之几:5÷%

2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:45立方厘米

第二步:增加的部分: 5立方厘米

第三步:增加百分之几:5÷%

3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:50—5=45立方厘米

第二步:增加的部分: 5立方厘米

第三步:增加百分之几:5÷%

4、“减少百分之几与增加百分之几”的解题方法完全相同。

5、与增加百分之几相同的还有“多百分之几”“提高百分之几”

“增长百分之几“等。

与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”等。

百分数应用题(二)

比一个数增加百分之几的数,比一个数减少百分之几的数。

例如1、矣得小学去年有80名学生,今年的学生人数比去年增加了25%,今年有多少名学生?

解题思路:单位1去年已经知道用乘法,增加用(1+25%)

算式:80×(1+25%)

2、矣得小学去年有80名学生,今年的学生人数比去年减少了25%,今年有多少名学生?

解题思路:单位1去年已经知道用乘法,减少用(1-25%)

算式:80×(1-25%)

3、矣得小学今年有100名学生,比去年增加了25%,去年有多少名学生?

解题思路:单位1去年不知道用除法,增加用(1+25%)

算式:100÷(1+25%)

4、矣得小学今年有100名学生,比去年减少了25%,去年有多少名学生?

解题思路:单位1去年不知道用除法,增加用(1-25%)

算式:100÷(1-25%)

百分数应用题(三)列方程解百分数应用题

1、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,第一天比第二天多看20页,这本书一共有多少页?

解题思路:单位1一本书不知道,可以选用方程或除法来解答。

根据“第一天比第二天多看20页”可以知道第一天是多的,第二天是少的,第一天减去第二天等于多出的20页。

等量关系式:第一天—第二天=20页

方法1:解:设这本书一共有X页。

由“第一天看了全书的25%”可以知道第一天等于全书乘以25%,用X可以表示为25%X,由“第二天看了全书的20%”可以知道第二天等于全书乘以20%,用X可以表示为20%依据等量关系式“第一天—第二天=20页”可以列方程为:25%X—20%X=20

方法2:“第一天比第二天多看20页”可以知道20页是第一天和第二天的差。要求单位1只要用20页除以20页的对于分率。

列算式为:20÷(25%—20%)

2、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,两天共看了20页,这本书一共有多少页?

等量关系式:由“两天共看了20页”可以知道第一天+等二天=20页。

方程法:解:设这本书共有X页,则第一天为25%X,第二天为20%X。

方程列为:25%X+20%X=20

算术法:由“两天共看了20页”可以知道20页是第一天和第二天的和,要求单位1只要用20页除以20页的对于分率。

列算式为:20÷(25%+20%)

3、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,还剩20页,这本书一共有多少页?

等量关系式:一本书—第一天—第二天=20页

方程法:解设这本书一共有X页,则第一天为25%X,第二天为20%X。

列方程为:X—25%X—20%X=20

算术法:20÷(1- 25%X- 20%)

4、小明看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩20页,这本书一共有多少页?

方程法:解设这本书一共有X页,则第一天为25%X,第二天为(25%X+10)页。

列方程为:X—25%X—(25%X+10)=20

百分数应用题(四)利息的计算

本金:存入银行的钱叫做本金。

利息:取款时银行多支付的钱叫做利息。

利息=本金×利率×时间

年10月9日以前国家规定,存款的利息要按20%的税率纳税。国债的利息不纳税。20XX年10月9日以后免收利息税。所以如无特殊说明,就不在计算利息税。

利率:利息与本金的比值叫做利率。

银行存款税后利息的计算公式:税后利息=利息×(1-20%)

国债利息的计算公式:利息=本金×利率×时间

本息:本金与利息的总和叫做本息。

应纳税额:缴纳的税款叫应纳税额。

税率:应纳税额与各种收入的比率叫做税率。

应纳税额的计算:应纳税额=各种收入×税率

例如:李老师把20XX元钱存入银行,整存整取五年,年利率按%计算,到期时,李老师的本金和利息共有多少元?

解题思路:要求“本金和利息共有多少元”应该用本金的20XX元加上利息的。

解题步骤:第一步:根据“利息=本金×利率×时间”算利息

利息:20XX×%×5=414元

第二步:本金+利息:20XX+414=2414元。

例如:李老师把20XX元钱存入银行,整存整取五年,年利率按%计算,到期时,李老师的本金和利息共有多少元?(如果利息按20%来上税)

解题思路:要求“本金和利息共有多少元”应该用本金的20XX元加上利息的。

解题步骤:第一步:根据“利息=本金×利率×时间”算利息

利息:20XX×%×5=414元

第二步:算税后利息:414×(1—20%)元

本金+利息:20XX+元。

百分数知识点总结 第4篇

1、意义:表示一个数是另一个数的百分之几。(千分数:表示一个数是另一个数的千分之几)

2、百分数和分数的区别:

①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数与小数的互化:

(1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

(2) 百分数化成小数:把小数点向左移动两位,同时去掉百分号

4、百分数的和分数的互化

(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分

(2)分数化成百分数:

① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

5、用百分数解决问题

(一)一般应用题

2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:单位“1”的量×分率=分率对应量 10的10%是多少

(2)分率前是“多或少” :单位“1”的量×(1+—分率)=分率对应量 比10多(少)10%

3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:(建议:最好用方程解答)

(1)方程:根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

4、求一个数比另一个数多(少)百分之几的问题:

两个数的相差量÷单位“1”的量 × 100% 或: 求多百分之几:(大数÷小数 – 1) × 100%② 求少百分之几:( 1 - 小数÷大数)× 100%

(二)、折扣

1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。

几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪

2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%

(三)、纳税

1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和

国防安全等事业。

3、应纳税额:缴纳的税款叫做应纳税额。

4、税率:应纳税额与各种收入的比率叫做税率。

5、应纳税额的计算方法:应纳税额 = 总收入 × 税率

(四)利息

1、存款分为活期、整存整取和零存整取等方法。

2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也

使得个人用钱更加安全和有计划,还可以增加一些收入。

3、本金:存入银行的钱叫做本金。

4、利息:取款时银行多支付的钱叫做利息。

5、利率:利息与本金的比值叫做利率。

6、利息的计算公式:利息=本金×利率×时间

7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50

⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40

⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%

⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%

⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

乙比甲少20%,少10,甲是多少?10÷20%=50

乙比甲少20%,少10,乙是多少?10÷20%-10=40

乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40

百分数知识点总结 第5篇

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的'数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

经典例题:

例、某次数学竞赛设一、二等奖。已知(1)甲、乙两校获奖的人数比为6:5。(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%。(3)甲、乙两校获二等奖的人数之比为5:6。

问甲校获二等奖的人数占该校获奖总人数的百分数是几?

解析:

根据条件(2)和(3):二等奖总人数为11份,那么一等奖总人数为11×2÷3=22/3;转化为整数比,二等奖与一等奖人数比为33:22;甲、乙两校二等奖人数比为5:6=15:18,甲、乙两校获奖人数比为6:5=30:25。所以,甲校获二等奖的人数占该校获奖总人数的:15÷30=50%

另一种算法:

获奖总人数6+5=11份,二等奖人数11×60%=6.6份,甲校二等奖人数6.6×5/11=3份

所以,甲校二等奖人数占该校获奖总人数的3÷6=50%

【百分数知识点总结(推荐5篇)】相关文章:

1.百分数知识点总结(推荐5篇)